Подобия теория - определение. Что такое Подобия теория
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Подобия теория - определение

ВАЖНЫЕ БЕЗРАЗМЕРНЫЕ ПАРАМЕТРЫ
Подобия критерии; Критерии подобия
Найдено результатов: 1050
ПОДОБИЯ ТЕОРИЯ      
учение об условиях подобия физических явлений. Подобия теория опирается на учение о размерностях физических величин и служит основой физического моделирования.
Подобия теория      

учение об условиях подобия физических явлений. П. т. опирается на учение о размерностях физических величин (см. Размерностей анализ) и служит основой моделирования физического (См. Моделирование физическое). Предметом П. т. является установление подобия критериев (См. Подобия критерии) различных физических явлений и изучение с помощью этих критериев свойств самих явлений.

Физические явления, процессы или системы подобны, если в сходственные моменты времени в сходственных точках пространства значения переменных величин, характеризующих состояние одной системы, пропорциональны соответствующим величинам другой системы. Коэффициенты пропорциональности для каждой из величин называется коэффициентом подобия.

Физическое подобие является обобщением элементарного и наглядного понятия геометрического подобия (См. Подобие). При геометрическом подобии существует пропорциональность (подобие) сходственных геометрических элементов подобных фигур или тел. При физическом подобии поля соответствующих физических параметров двух систем подобны в пространстве и времени. Например, при кинематическом подобии существует подобие полей скорости для двух рассматриваемых движений; при динамическом подобии реализуется подобие систем действующих сил или силовых полей различной физической природы (силы тяжести, силы давления, силы вязкости и т.п.); механическое подобие (например, подобие двух потоков жидкости или газа, подобие двух упругих систем и т.п.) предполагает наличие геометрического, кинематического и динамического подобий; при подобии тепловых процессов подобны соответствующие поля температур и тепловых потоков; при электродинамическом подобии - поля токов, нагрузок, мощностей, поля электромагнитных сил. Все перечисленные виды подобия - частные случаи физического подобия.

С развитием исследований сложных физических и физико-химических процессов, включающих механические, тепловые и химические явления, развиваются и методы П. т. для этих процессов, например, устанавливаются условия подобия процессов трения и износа деталей машин, кинетики физико-химических превращений и др. явлений. Пропорциональность для подобных явлений всех характеризующих их параметров приводит к тому, что все безразмерные комбинации, которые можно составить из этих параметров, имеют для подобных явлений одинаковые численные значения. Безразмерные комбинации, составленные из определяющих параметров рассматриваемых явлений, называются критериями подобия. Любая комбинация из критериев подобия также представляет собой критерий подобия рассматриваемых физических явлений.

Если в рассматриваемых физических явлениях или системах существует равенство не всех, а лишь некоторых независимых критериев подобия, то говорят о неполном, или частичном, подобии. Такой случай наиболее часто встречается на практике. При этом существенно, чтобы влияние на протекание рассматриваемых физических процессов критериев, равенство которых не соблюдается, было незначительным или малосущественным.

Размерные физические параметры, входящие в критерии подобия, могут принимать для подобных систем сильно различающиеся значения; одинаковыми должны быть лишь безразмерные критерии подобия. Это свойство подобных систем и составляет основу моделирования.

С. Л. Вишневецкий.

Ниже более строго излагаются логические основы П. т. Предположим, что для описания изучаемых явлений употребляются r основных независимых единиц измерения A1, А2,..., Ar (например, в абсолютных системах единиц основными являются единицы длины L, массы М и времени T). Производные единицы измерения имеют вид: . Их размерность характеризуется числовыми показателями p1, p2,..., pr. Каждая величина Х размерности [Х] = [Q] представляется в виде: X = xQ, где х - числовое выражение величины Х при выбранной системе основных величин A1, А2,..., Ar.

Пусть изучается класс явлений S, каждое из которых определяется заданием определённых значений системы величин {Yα}. Два таких явления S (1) и S (2) называются подобными, если значения величин Yα(2), характеризующие явление S (2) получаются из значений соответствующих величин Yα(1), характеризующих явление S (1) по формулам:

,

где коэффициент подобия k1, k2,..., kr постоянны, а показатели p1, p2,..., pr определяются размерностью.

величин Yα.

Предположим, что из системы величин {Yα} выделена некоторая часть, образующая систему {Хβ} определяющих параметров, так что числовое значение yz любой величины Yα является функцией Yα = fα{xβ} числовых значений xβ величин Xβ и вид функциональных зависимостей fα остаётся одним и тем же при любом выборе основных единиц измерения A1, A2,..., Ar. В этом предположении основной принцип П. т. может быть сформулирован следующим образом. Для подобия явлений S (1) и S (2) необходимо и достаточно, чтобы значения любой безразмерной комбинации

, (1)

определяющих параметров в явлениях S (1) и S (2) были равны: k (1) = k (2).

Каждое безразмерное выражение k вида (1) называется критерием подобия. Очевидно, что при таком определении критериев подобия в их число попадают все безразмерные определяющие параметры и все отношения вида:

, (2)

где и - определяющие параметры одной и той же размерности.

Необходимость для подобия равенств k (1) = k (2) в применении к безразмерным параметрам и отношениям вида (2) очевидна непосредственно. Их можно называть тривиальными. Сами отношения k вида (2) при перечислении критериев подобия часто опускают. Если тривиальные условия k (1) = k (2) считаются заведомо выполненными, то среди нетривиальных условий подобия k (1) = k (2) имеется только s = n - r' независимых, где n - число различных размерностей величин системы {Хβ}, а r' - число независимых размерностей среди этих n размерностей. Т. к. всегда r' r, то s < n - r.

Например, геометрическая картина стационарного обтекания прямоугольной пластинки, помещенной в однородный неограниченный поток вязкой несжимаемой жидкости со скоростью на бесконечности, параллельной продольной стороне пластинки, определяется: 1) длиной пластинки l, 2) её шириной b, 3) скоростью потока на бесконечности υ, 4) кинематический коэффициент вязкости ν. Т. к. [b] = [l], [ν] = [υl], то среди трёх размерностей определяющих параметров имеются лишь две независимые, т. е. r' = 2 и s = n - r' = 3 - 2 = 1. В соответствии с этим имеется один нетривиальный критерий подобия - число Рейнольдса Re = υl/ν. Кроме того, имеется один тривиальный критерий подобия b/l. Если исследуемые явления изучаются при помощи дифференциальных уравнений, то определяющие параметры появляются: 1) в виде величин, входящих в начальные и граничные условия, 2) в виде коэффициентов, входящих в дифференциальные уравнения. После приведения уравнений к безразмерному виду в них остаются лишь безразмерные коэффициенты, которые и являются критериями подобия.

Например, уравнения стационарного движения несжимаемой вязкой жидкости

, , i = 1, 2, 3

(р - давление жидкости, υi - компоненты скорости, xi - декартовы координаты) приводятся к безразмерному виду преобразованием

xi = ξil, υi = ηiυ, p = ξρυ2

В новых переменных ξi, ηi, ξ уравнения имеют вид:

,

, i = 1, 2, 3.

А. Н. Колмогоров.

Практические применения П. т. весьма обширны. Она даёт возможность предварительного качественно-теоретического анализа и выбора системы определяющих безразмерных параметров сложных физических явлений. П. т. является основой для правильной постановки и обработки результатов экспериментов, В сочетании с дополнительными соображениями, полученными из эксперимента или из уравнений, описывающих физическое явление, П. т. приводит к новым существенным результатам.

Лит.: Седов Л. И., Методы подобия и размерности в механике, 7 изд., М., 1972; Эйгенсон Л. С., Моделирование. М., 1952; Веников В. А., Теория подобия и моделирование применительно к задачам электроэнергетики, М., 1966; Кирпичев М. В.. Теория подобия, М'.. 1953; Дьяконов Г. К., Вопросы теории подобия в области физико-химических процессов, М. - Л., 1956.

ПОДОБИЯ КРИТЕРИИ         
безразмерные числа, составленные из размерных физических параметров, определяющих рассматриваемые физические явления. Равенство однотипных подобия критериев (напр., Маха чисел, Рейнольдса чисел и др.) для двух физических явлений и систем - необходимое и достаточное условие их физического подобия.
Подобия критерии         

безразмерные (отвлечённые) числа, составленные из размерных физических параметров, определяющих рассматриваемые физические явления. Равенство всех однотипных П. к. для двух физических явлений и систем - необходимое и достаточное условие физического подобия этих систем. П. к., представляющие собой отношения одноимённых физических параметров системы (например, отношения длин), называются тривиальными и при установлении определяющих П. к. обычно не рассматриваются: равенство их для двух систем является определением физического подобия. Нетривиальные безразмерные комбинации, которые можно составить из определяющих параметров, и представляют собой П. к. Всякая новая комбинация из П. к. также является П. к., что дает возможность в каждом конкретном случае выбрать наиболее удобные и характерные критерии. Число определяющих нетривиальных П. к. меньше числа определяющих физических параметров с различными размерностями на величину, равную числу определяющих параметров с независимыми размерностями. Подробнее см. Подобия теория.

Если известны уравнения, описывающие рассматриваемое физическое явление, то П. к. для этого явления можно получить, приводя уравнения к безразмерному виду путём введения некоторых характерных значений для каждого из определяющих физических параметров, входящих в систему уравнений. Тогда П.к. определятся как безразмерные коэффициенты, появляющиеся перед некоторыми из членов новой, безразмерной системы уравнений. Когда уравнения, описывающие физическое явление, неизвестны, П. к. отыскиваются при помощи анализа размерностей, определяющих физические параметры (см. Размерностей анализ).

П. к. механического движения получается из уравнения, выражающего второй закон Ньютона и называется числом Ньютона Ne = Ft2/ml, где F - действующая на тело сила, m - его масса, t - время, l - характерный линейный размер.

При изучении упругих деформаций конструкции под воздействием внешних сил основными П. к. являются Пуассона коэффициент для материала конструкции ν= |ε12| и критерии ρgl/E, F/El2, где ε = ΔL/L - относительная продольная деформация, ε1 = Δd/d - относительная поперечная деформация, Е - модуль Юнга, ρ - плотность материала конструкции, F - характерная внешняя сила, g - ускорение силы тяжести.

В гидромеханике важнейшими П. к. являются Рейнольдса число Re = ρυl/μ = υl/μ, Маха число M = υ/a* и Фруда число Fr = υ2/gl, где ρ - плотность жидкости или газа, υ - скорость течения, μ - динамический коэффициент вязкости, ν = μ/ρ - кинематический коэффициент вязкости, а* - местная скорость распространения звука в движущейся среде. Каждый из П. к. имеет определенный физический смысл как величина, пропорциональная отношению однотипных физических величин. Так, число Re характеризует отношение инерционных сил при движении жидкости или газа к силам вязкости, а число Fr - отношение инерционных сил к силам тяжести.

Основными П. к. процессов теплопередачи между жидкостью (газом) и обтекаемым телом являются Прандтля число Pr = ν/а = μср/λ, Нуссельта число Nu = al/λ, Грасгофа число Gr = βgl3ΔT/ν2, а также Пекле число Pe = υl/a и Стэнтона число St = α/ρcpυ. Здесь α - коэффициент теплопередачи, λ - коэффициент теплопроводности, cp - удельная теплоёмкость жидкости или газа при постоянном давлении, α= λ/ρcp - коэффициент температуропроводности, β - коэффициент объёмного расширения, ΔT - разность температур поверхности тела и жидкости (газа). Два последних числа связаны с предыдущими соотношениями: Ре = PrRe, St = Nu/Pe.

Для распространения тепла в твёрдом теле характерны П. к.: Фурье число Fo = at/l2 и число Био Bi = αl/λ. Число Bi определяет характер соответствия между температурными условиями в окружающей среде и распределением температуры в теле.

В процессах, изменяющихся с течением времени t, основным критерием подобия, характеризующим одинаковость протекания процессов во времени, является критерий гомохронности Ho = υt/l. В задачах гидроаэромеханики нестационарных течений этот критерий обычно называется Струхаля числом Sh. Критерий гомохронности в случае подобия электродинамических явлений записывают в виде Ho = ωt, где ω - характерная частота.

Примером П. к. электромагнитных полей служат критерии: μγl2/t и ε/γt, где μ - магнитная проницаемость среды, γ - её удельная проводимость, ε - диэлектрическая проницаемость среды, а в случае подобия электрических цепей с распределёнными параметрами - критерии: L/Rt и C/Gt, где L - индуктивность, R - сопротивление, С - ёмкость, G - проводимость.

Лит. см. при ст. Подобия теория.

С. Л. Вишневецкий, С. М. Тарг.

Критерии подобия         

необходимые условия физического подобия двух явлений (см. Подобия теория), например явлений, имеющих место для натурного объекта и его модели. К. п. состоят в равенстве для рассматриваемых явлений некоторых безразмерных величин, называются характеристическими числами. Иногда К. п. называют сами эти числа. Ими являются Маха число, Рейнольдса число, Прандтля число, Струхаля число, Эйлера число, Фруда число и др.

Критерий подобия         
Критерий подобия — безразмерная величина, составленная из размерных физических параметров, определяющих рассматриваемое физическое явление. Равенство всех однотипных критериев подобия для двух физических явлений и систем — необходимое и достаточное условие их физического подобия.
Теория катастроф         
  • thumb
  • Поверхность катастрофы «Ласточкин хвост»
Катастроф теория; Теория особенностей
Теория катастроф — раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Теория катастроф — раздел современной математики, который является дальнейшим развитием теории устойчивости и бифуркаций.
КАТАСТРОФ ТЕОРИЯ         
  • thumb
  • Поверхность катастрофы «Ласточкин хвост»
Катастроф теория; Теория особенностей
(катастрофизм) (от греч. katastrophe - поворот, переворот), геологическая концепция, согласно которой в истории Земли периодически повторяются события, внезапно изменяющие первично горизонтальное залегание горных пород, рельеф земной поверхности и уничтожающие все живое. Выдвинута в 1812 французским ученым Ж. Кювье для объяснения смены фаун и флор, наблюдаемых в геологических пластах. К кон. 19 в. катастроф теория потеряла свое значение.
Катастроф теория         
  • thumb
  • Поверхность катастрофы «Ласточкин хвост»
Катастроф теория; Теория особенностей

катастрофизм учение 1-й половины 19 в., рассматривавшее геологическую историю Земли как чередование длительных эпох относительного покоя и сравнительно коротких катастрофических событий, резко преображавших лик планеты. Идея о катастрофах зародившаяся в глубокой древности, в 17-18 вв. стала использоваться для истолкования геологической истории. Но т.к. длительность существования Земли до начала 19 в. оценивалась не более чем в 100 тыс. лет, было трудно объяснить действием обычных причин зафиксированные в толщах пород огромные изменения, претерпевавшиеся Землёй и её органическим миром в прошлом. Стремясь найти выход из этого затруднения, французский естествоиспытатель Ж. Кювье в 1812 выдвинул гипотезу о катастрофах (переворотах), во время которых на большей части планеты якобы погибало всё живое, а затем опустошённые места заселялись другими видами организмов, пережившими катастрофу в отдалённых районах. Это была попытка не только объяснить грандиозность прошлых преобразований Земли, но и преодолеть противоречие между господствовавшими убеждениями в неизменности видов и уже тогда прочно установленным фактом многократной смены в геологическом разрезе отличных друг от друга ископаемых флор и фаун. Идеи Кювье развивали французский палеонтолог А. д'Орбиньи, швейцарский геолог Л. Агассис, английский геолог А. Седжвик и др., насчитывавшие в геологической истории Земли 27 катастроф, во время которых якобы погибал весь органический мир. После каждой катастрофы, по представлениям этих учёных, в результате очередного божественного "акта творения" создавались совершенно новые растения и животные, не связанные с ранее существовавшими; каждый раз они были более сложно и совершенно организованы, чем предшествующие. В периоды между катастрофами никакого развития и изменений вновь созданные живые существа якобы не претерпевали. Концепция катастрофизма и неоднократных творческих актов согласовывалась с библейской версией творения мира. Принимая эту концепцию, можно было объяснить современное состояние поверхности Земли как результат последнего во времени творческого акта.

Тем не менее катастрофизм первой половины 19 в. сыграл положительную роль в развитии биостратиграфии (См. Биостратиграфия), поскольку учением о резких границах между различными по возрасту толщами и качественным своеобразием органического мира каждого периода (эпохи, века) он способствовал укреплению понятия о руководящих окаменелостях. Положительным было и то, что благодаря К. т. широко распространились идеи о прогрессе в органическом мире и об эпизодических событиях, нарушающих однообразие в истории Земли. Это способствовало формированию в дальнейшем представлений о сочетании эволюционного и скачкообразного развития. В середине 19 в. К. т. стала утрачивать своё значение в геологии благодаря победе представлений о том, что ныне действующих геологических факторов достаточно для осуществления за длительный срок всех перемен, зафиксированных в разрезе (Ч. Лайель). Позднее катастрофизм был побежден и в биологии в результате развития эволюционных представлений (Ч. Дарвином и др.). Однако отказ от идей катастрофизма не был окончательным: в 1-й половине 20 в. они частично возродились в форме так называемого неокатастрофизма - представления об одновременных на всей планете фазах складчатости и горообразования, прерывающих длительные эпохи относительного покоя и медленной эволюции коры (нем. геолог Х. Штилле и его последователи); высказываются мысли о катастрофических событиях во Вселенной, вызывающих усиленную радиацию, обусловливающую гибель одних групп организмов и быстрые мутационные изменения других, приводящие к возникновению новых видов и родов живых организмов (нем. палеонтолог О. Шиндевольф). Убедительная критика идей неокатастрофизма в тектонике дана Н. С. Шатским, а в палеонтологии - Л. Ш. Давиташвили.

В. В. Тихомиров.

Теория информации         
  • Схема системы связи
РАЗДЕЛ ПРИКЛАДНОЙ МАТЕМАТИКИ, РАДИОТЕХНИКИ И ИНФОРМАТИКИ, ОТНОСЯЩИЙСЯ К ИЗУЧЕНИЮ СВОЙСТВ ИНФОРМАЦИИ
Информации теория; Математическая теория связи; Теория передачи информации
Теория информации — раздел прикладной математики, радиотехники (теория обработки сигналов) и информатики, относящийся к измерению количества информации, её свойств и устанавливающий предельные соотношения для систем передачи данных. Как и любая математическая теория, теория оперирует математическими моделями, а не реальными физическими объектами (источниками и каналами связи).

Википедия

Критерий подобия

Критерий подобия — безразмерная величина, составленная из размерных физических параметров, определяющих рассматриваемое физическое явление. Равенство всех однотипных критериев подобия для двух физических явлений и систем — необходимое и достаточное условие их физического подобия.

Критерии подобия, представляющие собой отношения одноимённых физических параметров системы (например, отношения длин), называются тривиальными и при установлении определяющих критериев подобия обычно не рассматриваются: равенство их для двух систем является определением физического подобия. Нетривиальные безразмерные комбинации, которые можно составить из определяющих параметров, и представляют собой критерии подобия.

Например:

«Из каждых 10 яблок 1 гнилое» — отношение количества гнилых яблок к собранным (1 яблоко)/(10 яблок) = 0,1 = 10%, и является тривиальным безразмерным числом.

Всякая новая комбинация из критериев подобия также является критерием подобия, что даёт возможность в каждом конкретном случае выбрать наиболее удобные и характерные критерии. Число определяющих нетривиальных критериев подобия меньше числа определяющих физических параметров с различными размерностями на величину, равную числу определяющих параметров с независимыми размерностями (см. «Пи-теорема»).

Если известны уравнения, описывающие рассматриваемое физическое явление, то критерии подобия для этого явления можно получить, приводя уравнения к безразмерному виду путём введения некоторых характерных значений для каждого из определяющих физических параметров, входящих в систему уравнений. Тогда критерии подобия определятся как безразмерные коэффициенты, появляющиеся перед некоторыми из членов новой, безразмерной системы уравнений. Когда уравнения, описывающие физическое явление, неизвестны, критерии подобия отыскиваются при помощи анализа размерностей, определяющих физические параметры (см. Анализ размерности).

Что такое ПОДОБИЯ ТЕОРИЯ - определение